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Multinomial regression for analyzing macroinvertebrate assemblage
composition data
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Abstract. Macroinvertebrate species composition data are often expressed as proportional abundances
when assessing water-quality conditions or responses to disturbance. Proportional abundances represent
the probability of belonging to one of many mutually exclusive and exhaustive groups (taxa). Proportional
abundances have some unique properties that must be considered when analyzing these data: 1) the
probabilities of group membership must sum to 1 and 2) a change in any 1 group affects all other groups.
We used multinomial regressions to analyze changes in proportional abundances along gradients of
urbanization in 9 metropolitan areas across the USA. Multinomial regression can be used to address
multiple nonlinear responses simultaneously, whereas simple linear regressions must be used to analyze
linear or polynomial responses of each group independently. We established that: 1) abundance ratios of
tolerant and moderately tolerant groups responded consistently (3–5% increase in the ratios for every 1%

increase in developed land cover in the watershed) across the urban gradient, 2) functional groups did not
change significantly, and 3) ratios based on assemblage metrics were better indicators of environmental
disturbance than ratios based on individual taxa. Multinomial regression, with its flexible model form, can
capture patterns of species succession along a resource or stressor gradient. Our results also demonstrate
that users of multinomial regression may encounter numerical problems with rare taxa, especially when
these taxa have a complete separation along the gradient. Consequently, multinomial regressions are more
suitable for analyzing aggregations of taxa or taxon traits.

Key words: generalized linear model, multinomial distribution, urbanization, species tolerance,
functional groups, benthic macroinvertebrates, disturbance, multinomial regression.

Biological assemblages are commonly used to assess
ecological conditions (Barbour et al. 1999, Davies and
Jackson 2006) and to quantify the effects of anthropo-
genic disturbances in streams (Walsh et al. 2001,
Kennen and Ayers 2002, Roy et al. 2003, Brown et al.
2009, Barbour and Paul 2010). Measures of richness,
abundance, and composition (relative abundance) of

taxa or aggregations of taxon traits (i.e., assemblage
metrics) are commonly used to describe responses or
expected conditions. These measures often do not
follow a normal distribution so they do not meet the
normality assumption that underlies analytical
methods, such as linear regression, analysis of
variance, or parametric multivariate analyses. Con-
sequently, analysis of these data involves transform-
ing the data or using methods that can accommodate
the appropriate distributions (e.g., generalized linear
models [GLM]; McCullagh and Nelder 1989). Com-
position data (relative abundance as proportions)
differ from richness and abundance data in that the
proportions that represent the variables (taxa or
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metrics) must sum to 1 within a sample and a change
in one group affects all other groups. These
characteristics and the issue of normality must be
addressed in the analyses. Because of these charac-
teristics, the relative abundance of a specific taxon or
group of taxa often responds to disturbance non-
linearly, as represented by the species-packing
model where the relative abundance of a taxon or
group along a disturbance gradient is modeled by a
bell-shaped curve (Whittaker 1967, Jongman et al.
1995). Unfortunately, responses based on composi-
tion data frequently are modeled with separate
linear regressions for each variable (Cuffney et al.
2005, 2010), which can result in models in which the
estimated relative abundances greatly deviate from
the species-packing model and can lead to estimated
relative abundances that do not sum to 1 (i.e., sum of
proportions . or ,1).

We introduce the use of multinomial regression
models as a quantitative method for analyzing
composition data and as a tool for evaluating trends
and changes in biological assemblages. We demon-
strate multinomial regression models for taxon
composition (relative abundance of Ephemeroptera
taxa) and the composition of assemblage metrics
(pollution-tolerance classes and functional groups).
This method is an extension of the familiar GLMs that
address issues related to the distribution of the
composition data (Fahrmeir and Tutz 1994, Agresti
2002), and we illustrate it by reanalyzing macroinver-
tebrate assemblage data from the US Geological
Survey (USGS) study on the effects of urbanization
on stream ecosystems (Brown et al. 2009, Cuffney
et al. 2010). The emphasis of our paper is on the
discussion of the method, graphical presentation of
the results, and model interpretation.

Methods

Study areas and data

Investigators for the USGS study on the effects of
urbanization on stream ecosystems examined respons-
es of aquatic biota (fish, invertebrates, and algae), water
chemistry, and physical habitat in 9 metropolitan areas
in different environmental settings: Atlanta, Georgia
(ATL); Boston, Massachusetts (BOS); Birmingham,
Alabama (BIR); Denver, Colorado (DEN); Dallas–Fort
Worth, Texas (DFW); Milwaukee–Green Bay, Wiscon-
sin (MGB); Portland, Oregon (POR); Raleigh, North
Carolina (RAL); and Salt Lake City, Utah (SLC). In each
metropolitan area, a multimetric urban intensity index
(MA-NUII) was used to identify representative gradi-
ents of urbanization within relatively homogeneous
environmental settings (McMahon and Cuffney 2000,

Cuffney and Falcone 2008). Data collected from these
areas were used to examine the rate and form of
biological responses, the physiochemical characteristics
most strongly associated with biological responses, and
responses among urban areas (Coles et al. 2004,
Cuffney et al. 2005, 2010, Brown et al. 2009).

We quantified urban intensity as % developed land
in each basin rather than with the MA-NUII to facilitate
comparisons with other studies of urbanization.
Percent developed land (National Land Cover Data-
base Type I, class 20; http://www.mrlc.gov/nlcd_
definitions.php) is 1 of 3 urban measures that were
combined to form the MA-NUII (Cuffney and Falcone
2008) and is strongly correlated with MA-NUII. We
characterized responses of benthic macroinvertebrate
assemblages as the composition (relative abundance)
of mayfly taxa, tolerance classes, and functional
groups. We obtained pollution-tolerance values (TV)
from Barbour et al. (1999) and NCDENR (2006) and
used them to derive 4 tolerance groups: intolerant (TV
ƒ 3), moderately tolerant (3 , TV , 7), tolerant (TV §

7), and unknown (TV not available). We used TVs from
NCDENR (2006) to supplement values from Barbour et
al. (1999) for metropolitan areas in the South (ATL, BIR,
DFW, and RAL). We derived TVs for other metropol-
itan areas from Mid-Atlantic (BOS), Upper Midwest
(MGB), and Northwest (DEN, SLC and POR) TVs from
Barbour et al. (1999). We derived 9 functional groups
(shredder, piercer, collector-gatherer, collector-filterer,
omnivore, predator, parasite, scraper, and unknown)
from Barbour et al. (1999). Among the 9 metropolitan
areas, watersheds in DEN, DFW, and MGB had high
percentages (.79%) of agricultural land cover prior to
urbanization (antecedent agricultural land cover
[AAG]), whereas watersheds in the other 6 areas had
relatively low AAG (,25%).

Probability distribution of species compositional data

We stored benthic macroinvertebrate data (counts for
each taxon expressed as no./m2) in matrix format with
rows representing sampling sites and columns repre-
senting taxa. An additional column contained % devel-
oped land for each site. In analyzing the assemblage
composition data, the response variables were the taxon
count variables and % developed land was the predictor
variable. The statistical basis for the method we used
is the assumption that taxon count variables can be
approximated by the multinomial distribution.

The multinomial distribution is a generalization of
the binomial distribution, the probability distribution
of the number of successes in n independent
Bernoulli trials. In the context of taxon composition
data, an independent Bernoulli trial is the process of

Freshwater Science jnbs-31-03-01.3d 18/5/12 01:53:53 682 Cust # 11-026R1

682 S. S. QIAN ET AL. [Volume 31



identifying an organism from a sample, and a trial is
a success when the organism is identified as a group
of interest (taxon or metric). For example, if the
relative abundance of intolerant taxa in a sample
were used as an indicator of water quality, then these
data would be summarized by 2 counts: the total
number of individuals (sample) and the number of
individuals belonging to the intolerant group (suc-
cesses). The statistical model to describe the random-
ness of the process is the binomial distribution of the
number of successes (x) in n trials:

xebinom(p,n) ½1�

where p is the probability of success representing the
mean of the distribution (or the relative abundance).
The statistical model for response variables with
binomial distribution is the logistic or probit regres-
sion, where the relative abundance p (after logit or
probit transformation) is modeled as a linear function
of §1 predictors. The logit transformation of p is
logit(p) = log(p/[1 2 p]), the log odds that an organism
in the sample belongs to the intolerant group. This is a
bivariate response variable problem. That is, for each
observation, the response is a vector of 2 elements—the
number of intolerant taxa and the number of non-
intolerant taxa (moderately tolerant, tolerant, and
unknown). We can use p1 as the probability of being
intolerant and p2 as the probability of being nonintol-
erant (p1 + p2 = 1). The logit transformation of p1 can be
expressed as log(p1/p2), the logarithm of the probability
ratio of one over the other. A statistical assumption of
the model is that both p1 and p2 are strictly positive,
implying that there are always individuals belonging to
the intolerant group in a given location. When p1 is
small, the chance of observing 0 intolerant taxa in a
sample is high. In other words, an observed 0 in a
sample does not imply that intolerant taxa do not exist,
rather that the chance of seeing an individual in that
group is low. The commonly used empirical relative
abundance is an estimate of the true relative abundance,
which is subject to estimation uncertainty. GLM should
be used with a proper probabilistic assumption on the
raw count data to account for this uncertainty properly.

When there are .2 taxon groups (e.g., intolerant,
moderately tolerant, tolerant, and unknown), the re-
sponse variable is a vector of .2 count variables with
each representing the observed counts of 1 taxon group.
For example, when the relative composition of the
tolerant group is considered, the response variable is
a vector of 4 count variables (yint, ymod, ytol, yunk),
representing the counts of intolerant, moderately toler-
ant, tolerant, and unknown taxon groups, respectively.
The statistical model describing the distribution of these

4 count variables is the multinomial distribution (Evans
et al. 2000) with 4 parameters representing the (unob-
servable) true relative abundances (pint, pmod, ptol, punk):

yint,ymod,ytol,yunkf gemultinomial pint,pmod,ptol,punk,Nð Þ,

where N = yint + ymod + ytol + yunk is the total count. The 4
relative abundances are constrained to sum to unity
(i.e., pint + pmod + ptol + punk = 1). In general,
if there are r taxon groups, we need r relative
abundances (p1, … , pr) to describe the composition,
but only r 2 1 free parameters (p2, … , pr and p1 = 1 2 p2

2 … 2 pr). If we pick the 1st group as a reference group,
the logit transformation under a multinomial distribu-
tion is a set of r 2 1 log odds ratios:

logit pj

� �
=log

pj

p1
½2�

for j = 2, …, r. Statistical inference about composition is
done with the logit-transformed probabilities.

Statistical models

The multinomial response model (Venables and
Ripley 2002) can be described in 2 steps, as in all
applications of GLM. First, a distributional assump-
tion is made on the response variable. In analyzing
species compositional data, the response variable Y =

{y1, …, yr}, the observed number of occurrences, is
assumed to be from a multinomial distribution:

Yemultinomial(p,N)

where N=
Xr

j=1
yj is the observed total abundance

and p = {p1, … , pr}, the variable of interest, is
the vector of relative abundances (with constraintXr

j=1
pj=1).

Second, the mean of individual relative abundance
is linked to a linear function of the predictors through
a link function. In the multinomial case, the mean
variable is the vector of relative abundances p.
Because these probabilities sum to 1, only r 2 1 sets
of free parameters need to be estimated. Setting p1 as
the baseline, the probability of occurrence is linked to
the predictors through the generalized logit transfor-
mation:

log
pj

p1
=Xbj ½3�

for j = 2, …, r, where the notation Xbj represents a
linear function of predictor variables, or Xbj = bj0 +
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bj1x1 + …+ bjpxp. Because
Xr

j=1
pj=1, we have

p
1

= 1

1z

Xr

k=2
eXbk

, and pj = e Xbj

1z

Xr

k=2
eXbk

, for j = 2, …,

r. Alternatively, let gj = Xbj for j = 1, …, r, and set b1

= 0 (so that g1 = 0 and eg1 =1), the probability formula
can be simplified to:

pi =
egiXr

k=1
egk

½4�

for i = 1, …, r.
Multinomial regression typically is used for ana-

lyzing interrelated categorical data (Agresti 2002),
such as observed counts of taxa in an assemblage.
Species compositional data can also be represented by
counts of taxa, which are commonly analyzed with
Poisson regression for individual taxa (e.g., Cuffney
et al. 2011). These 2 methods (multinomial and
Poisson regressions) are statistically the same when
the analysis considers the interrelatedness of the
taxon groups (Baker 1994). In our paper, all 0s are
assumed to be sampling 0s (Agresti 2002). When
structural 0s are present, different methods should be
used (Zuur et al. 2009).

Computation

The maximum likelihood estimator of the multino-
mial regression model is implemented in the R
function multinom from the R package nnet in the
VR bundle (Venables and Ripley 2002). Other imple-
mentations of the multinomial regression are avail-
able in R, but we chose multinom because it is well
documented and has many supporting examples.

As with most statistical software, the function
multinom will return the estimated model coefficients
(bs in Eq. 3). These coefficients describe changes in the
log ratios of relative abundance of a given species
group over the relative abundance of the reference
group. The relationship between the relative abun-
dance and the predictor (x) is nonlinear. Consequent-
ly, the statistical significance test associated with
model coefficients is often related to specific condi-
tions and should not be interpreted as in a linear
model. The tobacco budworm example in Venables
and Ripley (2002) illustrates this point. Ecological
interpretation of model results should be based on the
relative abundances estimated using Eq. 4, which also
can be presented graphically. The choice of reference
group is mathematically inconsequential, and differ-
ent software may select different reference groups.
The R function multinom uses the left-most column of
the species group matrix as the reference group. In

these analyses, the reference groups were the intoler-
ant taxa for tolerance groups, piercers (PI) for
functional groups, and varied among metropolitan
areas for the Ephemeroptera (Caenis in ATL and DFW,
Baetis tricaudatus in DEN and SLC, Plauditus in RAL,
Stenonema vicarium in BOS, Pseudocloeon propinquum in
BIR, Diphetor hageni in MGB, and Epeorus in POR). A
multinomial model cannot be identified when data
are completely separated, that is, a taxon (or group) is
present (absent) when the predictor x (urban gradient)
is less than a threshold and absent (present) when the
predictor is larger than the same threshold (Section
5.8 of Gelman and Hill 2007). Generally, a completely
separated taxon should be removed from the analysis,
or taxa should be combined to avoid this problem.

Results

Tolerance classes

The fitted model coefficients (Table 1) describe
linear models between the log ratios (relative abun-
dance of tolerant vs intolerant [Tol], moderately
tolerant vs intolerant groups [ModTol], and unidenti-
fied tolerance group vs intolerant [Unknown]) and %

developed land. The intercept is the mean log ratio
when % developed land is 0, and the slope is the
increase of the log ratio per 1% increase in developed
land. The ratio is in a logarithmic scale, so it increases
at a fixed multiplicative rate for every % increase
in developed land (see Qian 2010, pp. 156–157). For
example, in BOS, every 1% increase in developed land
would result in ,4 and 5% increase in the ratios of
moderately tolerant over intolerant and tolerant over
intolerant, respectively. The approximate 95% confi-
dence intervals of these slopes (mean 62 SE) can be
used to check for statistical significance. If the confi-
dence interval includes 0, the slope is not statistically
different from 0 at a significance level of ,0.05. Slopes
from the 3 metropolitan areas with high AAG (DEN,
DFW, and MGB) were not statistically different from 0,
and slopes from the other 6 areas were different from 0.
Many macroinvertebrate metrics from the 3 metropol-
itan areas with high AAG also were unresponsive to
urbanization (Cuffney et al. 2010, Kashuba et al. 2010,
Qian et al. 2010). Interpretation of statistical significance
of model coefficients is related specifically to the ratio of
relative abundance of an individual group over the
reference group, not the relative abundance of the group
in question. See the Appendix (available online from:
http://dx.doi.org/10.1899/11-026.1.s1) for model re-
sults using a different reference group.

We used the estimated model coefficients to calculate
the relative abundance of each of the 4 groups along an
urban gradient using Eq. 4. (Note that the choice of
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reference group will not change the outcome.) We
estimated uncertainty about the estimated relative
abundance with a Monte Carlo simulation that drew
random samples of model coefficients assuming that the
coefficients followed a multivariate normal distribution.
In Fig. 1, model-predicted relative abundance (50 and
95% credible intervals) was compared to observed
relative abundance from BOS. The rapid decrease of
the intolerant group and the rapid increase of the
tolerant group reflected the definition of these groups
even though the TVs in Barbour et al. (1999) and
NCDENR (2006) were not specific to urbanization. The
other 5 metropolitan areas with low AAG had patterns
similar to BOS, whereas the 3 metropolitan areas with
high AAG (DEN, DFW, MGB; Cuffney et al. 2010)
generally showed no response in the relative abundance
of the 3 tolerance groups to urbanization (Fig. 2).

Functional groups

The multinomial regression models relating the
relative abundance of the functional groups to urban-
ization did not respond strongly in any metropolitan
areas (Fig. 3). Instead, responses were generally flat

across the gradient of urban intensity because the
apparent increases or decreases in some groups were
statistically insignificant when considering the estima-
tion uncertainty. The flat responses indicate that the
relative composition of the functional groups remained
constant and, unlike relative composition of tolerance
classes, was not affected by the amount of AAG in the
metropolitan area. The difficulty of graphically pre-
senting multinomial model results is clearly shown in
Figs 2 and 3. For example, each panel of Fig. 3 can be
expanded into 8 separate ones (similar to Fig. 1) to
show the details of each group’s response. Figs 2 and 3
should be used as tools to examine the general
patterns. Regression coefficients for these models are
in Table S2 in the Appendix.

Ephemeroptera taxa

The multinomial regression models relating mayfly
taxa to urban intensity showed strong responses in
most of the metropolitan areas. However, many of the
models were adversely affected by the presence of rare
taxa that created a complete separation between
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TABLE 1. Estimated model coefficients (Coef) and their standard errors (SE) for responses of moderately tolerant (Modtol),
tolerant (Tol), and unknown tolerance (Unknown) groups to urbanization relative to responses of intolerant (Intol) groups. See
Fig. 2 for location codes.

City Ratio to Intol

Intercept Slope

Coef SE Coef SE

ATL Modtol 1.5372 0.1755 0.0425 0.0097
Tol 20.0233 0.2028 0.0519 0.0100
Unknown 0.0120 0.2050 0.0441 0.0102

BIR Modtol 0.6349 0.1539 0.0158 0.0040
Tol 20.6601 0.1917 0.0265 0.0045
Unknown 21.1563 0.2251 0.0239 0.0051

BOS Modtol 0.2072 0.0948 0.0392 0.0053
Tol 21.3007 0.1383 0.0485 0.0061
Unknown 22.4987 0.2264 0.0443 0.0086

DEN Modtol 1.8831 0.2417 0.0096 0.0055
Tol 1.5007 0.2482 0.0085 0.0056
Unknown 21.1133 0.4181 0.0123 0.0084

DFW Modtol 3.0901 0.3316 0.0013 0.0088
Tol 3.1614 0.3312 0.0005 0.0088
Unknown 2.5080 0.3375 20.0015 0.0090

MGB Modtol 1.5603 0.1669 0.0180 0.0057
Tol 0.7849 0.1800 0.0192 0.0059
Unknown 20.1164 0.2109 0.0204 0.0063

POR Modtol 0.4577 0.1147 0.0234 0.0039
Tol 20.6098 0.1456 0.0264 0.0043
Unknown 22.0101 0.2484 0.0211 0.0064

RAL Modtol 0.9518 0.1700 0.0241 0.0047
Tol 0.0381 0.1924 0.0289 0.0049
Unknown 20.3039 0.2091 0.0255 0.0051

SLC Modtol 20.0503 0.1875 0.0264 0.0037
Tol 21.1384 0.2342 0.0357 0.0042
Unknown 23.0216 0.4816 0.0342 0.0076
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presence and absence along the urban gradient. For
example, the model for POR (Fig. 4A) was strongly
affected by the perfect separation of Leptohyphidae
and Epeorus sp., both with all 0 counts, except 1 positive
count at the low end of the urban gradient. This
positive count caused the estimated relative abundance
for Epeorus sp. to be close to 1 and forced the estimates
for all others to be close to 0. (See Appendix for further
discussion of the influence of rare taxa.) Rare taxa
represent a small fraction of the total and often exhibit
little change in relative composition. When a rare taxon
creates a complete separation, this single taxon causes
a very high level of uncertainty in the estimated model
coefficients and leads to distortions in the response
patterns of the other taxa because the modeled
probabilities must sum to 1. These distortions are most
evident at the low end of the urbanization gradient
because rare mayfly taxa are much more likely to be
associated with the low end of the gradient (Fig. 4A).
Removing taxa with complete separations can resolve
the numerical problem (Fig. 4B) and clarify patterns of
responses for the other taxa, particularly at the low end
of the urban gradient.

Responses of the mayfly taxa differed substantially
among metropolitan areas. The most complicated
response was observed in ATL (Fig. 5A) where many
taxa showed responses indicative of species replacement
across the urban gradient. In contrast, in agriculturally
affected MGB, only 2 taxa showed strong responses.
These taxa displayed asymptotic increases (Baetis
flavistriga) and decreases (Leucrocuta sp.) in relative
abundance over only a portion of the urban gradient
(0–20% developed land, Fig. 5B). No changes in
assemblage composition were evident in MGB when
% developed land was .20%.

We summarized responses in other metropolitan
areas based on the types of responses observed in
ATL and MGB, i.e., Gaussian responses (e.g., Pseudo-
cloeon sp. in ATL), monotonically declining responses
(e.g., Leucrocuta sp. in MGB), and monotonically
increasing responses (e.g., Baetis flavistriga in MGB).
Each of these patterns of response had an associated
level of urbanization that indicated peak relative
abundance (Gaussian) or the point at which mono-
tonic increases began or decreases ended. These
characteristics were used to compare responses
among taxa and across metropolitan areas (Table 2).
A more complete and comprehensive representation
of mayfly responses is provided in the Appendix
(coefficients: Table S3, graphs of composition changes:
Figs S1, S2).

Mayfly responses were defined by just 2 or 3 taxa in
most (6 of 9) metropolitan areas. BOS and ATL were
exceptions in that responses were defined by 6 and 8
taxa, respectively. The composition of mayfly assem-
blages varied among metropolitan areas, and no taxon
was present in all metropolitan areas. Of the mayfly
taxa that showed strong responses to urbanization,
the most widely distributed was Baetis flavistriga (6
metropolitan areas) followed by Baetis intercalaris (5),
Baetis tricaudatus (4), Acentrella turbida (3), Paraleptoph-
lebia (4), and Isonychia (4). The pattern of responses
varied widely among taxa within a metropolitan area
and for taxa across metropolitan areas (Table 2). The
most consistent response was observed for Baetis
flavistriga, for which relative abundance increased as
urbanization increased in the 6 metropolitan areas
in which it occurred. However, the increases began
immediately in 3 metropolitan areas and at interme-
diate levels of urbanization (20–50% developed land)
in 3 others. Acentrella turbida decreased at intermedi-
ate levels of urbanization (20–40% developed land) in
3 metropolitan areas, but did not respond in ATL.
Responses of Baetis tricaudatus encompassed all
possibilities (none, increasing, decreasing, and Gauss-
ian) depending upon the metropolitan area. Similar
differences in responses were observed for other taxa.

Freshwater Science jnbs-31-03-01.3d 18/5/12 01:53:54 686 Cust # 11-026R1

FIG. 1. Relative abundances of intolerant (A), moderately
tolerant (B), tolerant (C), and unknown tolerance (D) groups
estimated with a multinomial model (dark circles) com-
pared to the observed relative abundances (triangles) along
a gradient of urbanization (% developed land) for the
Boston metropolitan area. The 50% and 95% confidence
intervals of the estimations are represented by the dark and
light shaded polygons, respectively. The prediction is
extrapolated beyond the data range to show the nonlinear
patterns of the fitted models.
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These results indicate that responses based on relative
abundance differed among metropolitan areas and
were not consistent with the pattern observed for
assemblage metrics.

Discussion

Why multinomial regression?

Expressing community responses as a proportion of
total abundance emphasizes the interconnections of
the structural components (species or metrics) of the
community as components respond to disturbance.
Accurate depiction of these responses is important to

developing an integrated understanding of commu-
nity rather than individual taxon responses. Multino-
mial regression is better suited to capturing these
nonlinear interrelated responses than is simple linear
regression. Thus, multinomial regressions capture
patterns of response that are not obvious when other
modeling techniques are used.

Mathematically, interrelated responses are modeled
by the multinomial distribution, which connects
observed counts to relative abundances. These rela-
tive abundances are not observed directly (although
the calculated relative abundances are estimates), and
they are linked to a disturbance variable through
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FIG. 2. Relative abundances of tolerance groups estimated with a multinomial model compared to the observed relative
abundances along a gradient of urbanization (% developed land) for the 9 metropolitan areas (Atlanta, Georgia [ATL];
Birmingham, Alabama [BIR]; Boston, Massachusetts [BOS]; Denver, Colorado [DEN]; Dallas–Fort Worth, Texas [DFW];
Milwaukee–Green Bay, Wisconsin [MGB]; Portland, Oregon [POR]; Raleigh, North Carolina [RAL]; and Salt Lake City, Utah
[SLC]. These plots compare responses among taxon groups and metropolitan areas. When the response of an individual group in
a specific area is of interest, plots should include confidence intervals (Fig. 1A–D).
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a nonlinear function as in Eq. 4. The nonlinear
multinomial regression model (Eq. 4) can encompass
many types of responses, including monotonic in-
creasing or decreasing responses and various shapes
of unimodal curves. Simple regression models with
appropriate data transformations also can be used to
match the nonlinear pattern shown in our study (e.g.,
models in Fig. 1 can be approximated by a quadratic
model). However, multinomial regression is far more
efficient in that the individual models shown in Eq. 4
are fit without a tedious model-selection process.
Furthermore, a multinomial model properly accounts
for the interaction among multiple taxon groups
through the constraint that relative abundances sum

to 1. When graphically presented, a multinomial
regression model provides an effective means of
displaying the change in the relative importance
of various taxon groups or biological traits along a
gradient.

Model interpretation

Multinomial regression is more complicated than
simple regression, and model coefficients are inter-
preted differently. In our model, the coefficients (bs)
of the multinomial regression model estimate the rate
at which the log of the odds ratio of 2 categories
changes as the predictor variable changes (% change
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FIG. 3. Relative abundances of the 8 functional groups estimated with a multinomial model compared to the observed relative
abundances along a gradient of urbanization (% developed land) in 9 metropolitan areas (see Fig. 2 for location codes). This plot
compares responses among taxon groups and metropolitan areas. When the response of an individual group in a specific area is
of interest, plots should include confidence intervals (Fig. 1A–D). PA = parasite, PR = predator, OM = omnivore, GC = collector-
gatherer, FC = collector-filterer, SC = scraper, SH = shredder, PI = piercer.
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FIG. 4. Relative abundances of mayfly taxa estimated with a multinomial model for the Portland (POR) metropolitan area
showing the effect of a perfect separation where taxa Epeorus sp. and Leptohyphidae were present at the low end of the urban
gradient and absent elsewhere (A) and the effect of removing these taxa (B). In panel A, the uncertainty in the estimates of Epeorus
sp. and Leptohyphidae obscure estimates for the other taxa, whereas in panel B, their removal reveals the responses of the
other taxa.
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FIG. 5. Relative abundances of mayfly taxa estimated with a multinomial model for an urban area with low antecedent
agricultural (AAG) land use (Atlanta [ATL]) (A) and one with high antecedent agriculture (Milwaukee–Green Bay [MGB]) (B).
Percent developed land induced a succession of taxa along the urbanization gradient in a metropolitan area with low AAG,
whereas little or no response was detected in a metropolitan area with high AAG.
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in ratio per 1 unit [1%] change in predictor). The odds
ratios are expressed relative to a baseline condition
(e.g., relative abundance of intolerant taxa). Conse-
quently, the interpretation and ecological relevance of
the coefficient depends on the category chosen as the
baseline condition. For example, knowing that the
ratio of the relative abundances of tolerant and
intolerant taxa increases by 3 to 5% per 1 unit increase
in urbanization (1% developed land) in metropolitan
areas with low AAG is ecologically relevant, as is
knowing that this rate is lower (,2% per 1 unit
change in urbanization) or not statistically significant
in areas with high AAG. In contrast, if the unknown
tolerance category were used as the baseline condi-
tion, the regression coefficients would represent the
rate of change in the ratio of the occurrence of tolerant
taxa to the occurrence of taxa whose functional group
could not be identified. This ratio is not particularly
relevant to understanding or managing the response
of invertebrates to urbanization.

Selection of baseline condition becomes increasing-
ly problematic as the data are divided into more
categories resulting in a larger number of possible
baseline conditions (e.g., modeling individual taxa
rather than metrics). The mayfly examples presented
in our paper had 5 to 14 possible baseline taxa per
metropolitan area compared to 4 and 8 possible
baseline conditions for tolerance and functional
groups, respectively. An analysis of the entire
macroinvertebrate assemblage would have involved
116 to 162 taxa making the process of determining the
most ecologically relevant baseline a daunting task.
Consequently, analyses that rely on interpretation of
the coefficients of the multinomial regression must be
done with careful consideration of the number of
possible baseline conditions to be evaluated and of the
ecological or management relevance of the relative
abundance ratios. Interpretations of coefficients are
most likely to be meaningful when the number of
categories in the analysis is relatively small. Thus,
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TABLE 2. Taxa that displayed large changes (§0.15) in modeled relative abundance over the urban gradient in §1
metropolitan area. Arrows indicate the general pattern of change in relative abundance over the urban intensity gradient (%
developed land) and the numbers indicate the beginning, end, or peak location of the change (e.g., Q 25 indicates a monotonic
decrease over the range of 0–25%, q 50 indicates a monotonic increase over the range of 50–100%, and q 50 Q indicates a
Gaussian response with maximum relative abundance at 50%), « indicates little change over the gradient, – indicates that the
taxon was not present in the metropolitan areas or the change was ,0.15. See Fig. 2 for location codes.

Taxon ATL BIR BOS POR RAL SLC DEN DFW MGB

Caenidae – – – – – – – – –

Caenis Q 25 – – – – – – q 18 Q –

Ephemerellidae – – – – – – – – –

Dannella simplex q 7 Q – – – – – – – –
Drunella flavilinea – – – – – 57 q – – –
Eurylophella Q 20 – – – – – – – –
Serratella deficiens « « Q 30 – – – – – –
Serratella serrata – – Q 16 – – – – – –

Leptohyphidae – – – – – – – – –

Tricorythodes – « – – – – Q 100 Q 100 –

Leptophlebiidae – – – – – – – – –

Paraleptophlebia – – Q 20 « « – « – –

Baetidae – – – – – – – – –

Acentrella turbida « Q 40 – Q 35 – – – – –
Baetis flavistriga 50 q 0 q 0 q – 20 q – 20 q – 0 q
Baetis intercalaris q 38 Q « – « q 50 Q – « – –
Baetis tricaudatus – – « 0 q – Q 100 q 70 Q – –
Fallceon quilleri – – – – – – « 0 q –
Plauditus q 6 Q – « – Q 80 – – – –
Pseudocloeon q 62 Q – – – – – – « –

Heptageniidae – – – – – – – – –

Leucrocuta – « – – Q 80 – – – Q 20
Rhithrogena – – – Q 70 – – – – –
Stenonema modestum q 18 Q – q 18 Q – « – – – –

Isonychiidae – – – – – – – – –

Isonychia « « q 18 Q – Q 80 – – – –
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analyses of aggregations of taxa (assemblage metrics)
that focus on a small number of ecologically relevant
traits are more likely to be amenable to interpretation
of the multinomial regression coefficients than anal-
yses of large numbers of individual taxa.

Interpretations of the regression coefficients are
affected by the choice of baseline condition, but the
estimated relative abundances are not. Consequently,
plotting the relative abundances against the predictor
variable provides a simple and consistent means of
visualizing responses across the gradient and compar-
ing the model prediction with the observed data
(Fig. 1A–D). Plots of the tolerance classes clearly
showed that the relative abundance of the intolerant
group decreased as urban intensity increased, whereas
the relative abundance of the tolerant group increased
for metropolitan areas with little AAG. These plots also
revealed that metropolitan areas with high levels of
AAG (DEN, DFW, and MGB) exhibited little response
across the urban gradient. These patterns of response
are consistent with our previous analyses and with
results of other studies in which decreases in tolerance
have been associated with increasing urbanization and
agriculture. Functional groups showed little response
to urbanization or agriculture. These results are
consistent with our previous analyses, but they differ
from those of others who have reported changes in
functional structure of the invertebrate assemblages in
response to urbanization and agriculture (Bacey and
Spurlock 2007, Turner et al. 2008).

Species traits vs individual taxa and the problem of
perfect separation

Plots of the estimated relative abundances for the
mayfly taxa showed strong responses in most metro-
politan areas. However, these plots revealed that
multinomial regression, like other univariate and
multivariate methods of analysis, are strongly affected
by taxa that occur at only a few sites (i.e., rare taxa).
Regression coefficients for these taxa cannot be deter-
mined with precision, often because of the problem of
perfect separation. Errors in the estimation of the
response of rare taxa may affect multinomial regres-
sions even more strongly than simple linear regressions
because the estimated relative abundances for the
categories in a multinomial regression must sum to 1.
Therefore, a large error in the estimation of the relative
abundance of a rare taxon will affect the estimates of the
relative abundances of other taxa. In contrast, simple
regressions estimate the occurrence (i.e., relative abun-
dance) of each category independently, and errors in
one regression do not directly affect estimates in other
regressions.

In our study, the problem of rare taxa was
addressed by removing them from the analysis
(especially those that created a complete separation).
This approach is commonly used in univariate and
multivariate analyses of taxon distributions (Gauch
1982, Clarke 1993, Jongman et al. 1995, McCune et al.
2002). The approach is based on the assumption that
rare taxa do not carry useful information because their
responses cannot be determined with precision (i.e.,
rare taxa constitute noise in the data set). However, in
the case of the mayfly taxa, rare taxa did not represent
random noise. Instead, most of the rare taxa (21 of 30
cases) occurred at sites with ƒ 10% developed land
(Fig. 2), a result indicating that they are far more
characteristic of sites with low urbanization than of
sites with high urbanization, which is why perfect
separation is often associated with rare taxa. Elimi-
nating rare taxa from the analysis removes this
information and may result in a somewhat biased
view of the distribution of mayfly taxa across the
urban gradient. In contrast, assemblage metrics are
not affected by rare taxa and are able to incorporate
information that is lost in the analysis of taxon
distributions.

Analysis of assemblage metrics (aggregations of
taxon traits) offers some advantages compared to
analyses of individual taxa. Metrics aggregate data
into a smaller number of categories. This characteris-
tic simplifies selection of an appropriate reference
category that has ecological or management signifi-
cance when compared to other categories. Metric
categories often have direct ecological significance
(e.g., tolerance or functional groups) that arises from
traits associated with the taxon. Metrics also are able
to incorporate information from rare taxa (e.g.,
tolerance values) that would be discarded in the
analysis of individual taxa. This ability can be
important, as demonstrated by our study, because
36 to 47% of the taxa in each metropolitan area occur
at just 1 or 2 sites. The mathematical inability of
multinomial regression to handle rare taxa is another
consideration when deciding whether a functional or
a structural approach is more appropriate for assess-
ing the effects of land use on stream ecosystems
(Dolédec et al. 2006, Townsend et al. 2008).

Concluding remarks

Multinomial regression is a statistically appropriate
method for modeling changes in invertebrate assem-
blage composition (relative abundances) that involve
.2 categories. The model can be used to analyze raw
count data obtained from quantitative (e.g., Surber) or
semiquantitative (e.g., kick net) sampling methods, as
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long as the sampling effort is consistent across all
sites. As a GLM method, multinomial regression is
able to handle the distribution (multinomial vs
normal) of the data in a manner that addresses the
interrelatedness of the relative abundance data. This
interrelatedness could not be addressed with the
correlations and simple linear regressions used in our
previous analyses of relative abundances (Cuffney
et al. 2005, 2010, Brown et al. 2009). Application of the
multinomial regressions to our data supported our
original conclusions regarding the pattern of responses
observed for tolerance, functional groups, and mayfly
taxa. The relative abundance of intolerant taxa de-
creased as urbanization increased and the relative
abundance of tolerant forms increased, a pattern well
established in the literature (Paul and Meyer 2001, Roy
et al. 2003, Walsh et al. 2005, Wenger et al. 2009).
Functional groups were not observed to respond to
urbanization or agricultural development in any of our
analyses though other investigators have shown
changes in functional composition associated with
urbanization and agriculture (Bacey and Spurlock
2007, Turner et al. 2008). The multinomial regressions
were also able to show patterns in the distribution of
mayfly taxa across the gradient that were not obvious
in our previous analyses (e.g., approximate Gaussian
responses in ATL). We considered only 1 predictor
(% developed land) in the examples presented here,
but multiple predictors can be used in multinomial
regression just as in a multiple regression problem.

The absence of change in the functional composition
of the macroinvertebrate communities in response to
perturbations caused by urbanization and degree of
agricultural development (i.e., amount of AAG) dif-
fered from results of other studies in which functional
groups changed with urbanization. For example,
Turner et al. (2008) observed changes in functional
groups and taxon richness in neotropical stream
communities affected by agriculture and urbanization,
and Bacey and Spurlock (2007) observed increases in
scrapers at urban sites and filter-feeders at agricultural
sites in California Central Valley streams. Our results
suggest that macroinvertebrate communities retain
their functional characteristics despite urban and
agricultural development in the watershed, at least in
terms of relative abundances.
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